Real Time Digital Simulator Applications in Education and Research

Presenter: Dr. Feifei Bai

Other team members: Prof Tapan Saha, Dr Ruifeng Yan, Dr Mollah Alam

Email: f.bai@uq.edu.au Tel: +61 7336 61006
School of Information Technology and Electrical Engineering
The University of Queensland (UQ)
2/10/2019
Outline

- UQ Renewable Energy Lab Introduction
- Renewable Energy Lab for Education
- Renewable Energy Lab for Research
- On-going Experiment
UQ Renewable Energy Laboratory

Network:
- RTDS (two racks and one NovaCor with two licenced cors)
- Eight Power Amplifiers
- Most commercial power system analysis tools (RSCAD, PSCAD and PSS/E)

Distributed Energy Resources:
- Two Solar PV Emulators and 5 PV inverters
- Battery Storage and Battery Inverter, BMS, Battery Charge/Discharge Controller and Simulator (GSS)

Load:
- Electrical Load and Resistant Load, Air-conditioner, Fridge

Control and communication:
- Faster Controller dSPACE, two Siemens Relays
- Dedicated communication and control by PLC
Renewable Energy Lab for Education

- Power system protection-relay test
- Power network modelling and simulation
- Hardware-in-the-Loop experiment
1. Relay Testing with Amplifier and RTDS

- Course: Power system protection (ELEC4302), ~35 students/semester
- Objective: Strengthen the understanding about the power system protection theory.
- Practical: Apply various events to test the existing and developed functionalities of the protection relay.
- Example: an under-voltage protection was programmed into the relay (40% voltage drop)
2. Distribution Network Modelling

- Course: Renewable energy integration (ELEC7313), ~35 students/semester
- Objective: Enhance the understanding of the renewable energy integration impact to the power networks.
- Practical: RSCAD-based modelling and hardware-in-the-loop test
- Example: ✓ Three-phase 35-bus system
 ✓ Operating at 11kV/433V supplies 102 houses
 ✓ Transformer: 315kVA, Δ-Y
2. Unbalanced Distribution Network Modelling

- Major components
 - Single-phase house: dynamic PQ model with actual load data injection
 - PV system: dynamic PQ model/current source with actual solar power data injection
- Power flow model validated with Open-DSS

Example scenario:
- 60% houses installed PV with 5kWp.
- More voltage unbalance during PV power injection time.
- Reverse power flow during the mid-day, some poles have voltage violation issues.
3. PV Inverter MPPT Test

- The power output of the PV simulator will be injected into the PV inverter.
- PV inverter MPPT boosts for around 2 minutes.
- Inverter DC side voltage and current become consistent after the power reaches the maximum power point (CT, PT installed).
Renewable Energy Lab for Research

- Real-time voltage management validation
- Inverter-based device operating behaviours extraction
- Battery management demonstration
1. Coordinated Control for Voltage Regulation

- Studied System: Load 2.5MW to 3MW, PV Plant: 3.275MWp, BESS: 760kWh
- Motivation: Excessive SVR tap operations, Battery overuse

 Voltage connection agreement [0.975 pu. to 1.01pu]

- Approach: short-term voltage sensitivity control + long-term voltage margin control

- Achievements:

 - Real-time control (every 5s)
 - Q priority (cost-effective)
 - Reduction of battery overuse
 - Non-interactive control with upstream SVRs

1. Coordinated Control Algorithm Validation with RTDS

- To model the real application scenarios, the actual system (Building-A) and the control centre (Building-B) are located in different places.
- A bidirectional communication link is created between RTDS and MatLab through GTNETX2.
- Computer II for network: Update the load, voltage and PV generation in RTDS at every 1s.
- Computer I for control centre: Send the generated control commands by Matlab control algorithm to RTDS.
3. Hardware for Battery Management

- dSPACE conjunction with Matlab to test control prototype in real time (50μs time step).
- dSPACE: Monitoring status receiver and control comments sending
- Matlab/Simulink: Battery control algorithm, dSPACE -BATSim interface
- RSCAD: Network, GTAO, GTAI
- Battery: Battery simulator (BATSim)/Kokam Battery
3. Battery Management Applications

- The system performance successfully demonstrated a realistic scenario of a grid connected BESS under the control of a dSPACE model.
- Scenario: Battery charging mode
 - Battery setting: $P = 0.05 MW$
 - Battery response: $P = 0.0461 MW$, $SOC = 69.867\%$, $PBATTERY<0==charging\ mode$
4. Centralized Control Platform Design

- Centralized Control Platform Design for monitoring status receiver and control comments sending
- PV simulator, Battery inverter: TCP/IP
- Matlab/Simulink: Control algorithm, dSPACE - BATSim interface
- RSCAD: Network, GTAO, GTAi, GTNETX2
- Battery: Battery simulator (BATSim)/Kokam Battery
On-going RTDS-based Experiment

- Centralized control of all controllable devices with RTDS through Matlab interface.
- Battery storage control system testing with Lithium-ion battery, BMS and battery inverter.
- South Australia model development and validation
- PMU testing
- …
Thank you!

Thanks for the strong support from RTDS Team!